CONTRACTORIENTED
PROGRAMMINGIN C++

AKA DESIGN BY CONTRACT
BY LOUIS “LUIGI” LANGHOLTZ 9/2023

OVERVIEW

1. Speaker
2. Meetup Group
3. Talk
® Giving Back
® Opinion
® Experience

® passion

SOME CONTEXT

DESIGN & DEVELOPMENT: ORIENTATIONS FOR DELIVERING CONCEPTS & SOLUTIONS

Design by contract (DBC).

Object oriented design (OOD).

Domain driven design (DDD).

Data oriented design (DOD).
velopment (TDD).

rogramming (defensive design).

https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Object-oriented_design
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Data-oriented_design
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Defensive_programming

FROM DEFENSIVE
PROGRAMMING

DEFENSIVE
OBSURDIUM

® How to test?
® Who's correct?

® Seen!

0 J o B W N

int square(int num) {
if (num < 0) throw
if (num < 0) throw
if (num < 0) throw
if (num < 0) throw
/] ...
return num * num;

; // defend input

; // defend memory pokes
; // defend flaky memory
; // defend cosmic rays

ABSENT MAJORITY, DEFENSIVE PROGRAMMING
FORBYZANTINE FAILURES LOWERS FAULT
TOLERANCE

https://en.wikipedia.org/wiki/Byzantine_fault

DEFENSIVE
OBSURDIUM

® How to test?
Compiler may elide

the if-statement.
® What does this test?

® Who's correct?

int square(const int &num) {
int& foo = *(int*)0; // compiles!
if (&num == nullptr) throw 0;
return num * num;

INSANITY IS DOING THE SAME THING OVER AND
OVER AGAIN AND EXPECTING DIFFERENT
RESULTS

TO OFFENSIVE PROGRAMMING

DEFENSIVE WITHIN
REASON

TRUSTING INTERNAL DATA VALIDITY

® “Only errors from outside
the program’s control are
to be handled”.

“Data from within the
program’s line of defense,
are to be trusted”.

const charx trafficlight_colorname(enum traffic_light_color c) {
switch (c) {
case TRAFFICLIGHT_RED: return "red";
case TRAFFICLIGHT_YELLOW: return "yellow";
case TRAFFICLIGHT_GREEN: return "green";
}
assert(0); // Assert that this section is unreachable.
// Warning: This 'assert' function call will be dropped by an optimizing
// compiler if all possible values of 'traffic_light_color' are listed in
// the previous 'switch' statement...

FROM WIKIPEDIA OFFENSIVE PROGRAMMING SECTION OF DEFENSIVE PROGRAMMING PAGE

https://en.wikipedia.org/wiki/Defensive_programming#Offensive_programming
https://en.wikipedia.org/wiki/Defensive_programming

See also:

® Defensive ing - Friend or Foe?

https://interrupt.memfault.com/blog/defensive-and-offensive-programming

CONTRACTS

GENERALLY SPEAKING & IN TERMS OF PROGRAMMING...

® Exchange promises between author & user.

® Contracts are to values, what concepts are to types.

DBC like offensive programming, but...

(More) for design, explicitly recognizing:

® Preconditions
® Postconditions

® |nvariants

https://en.wikipedia.org/wiki/Precondition
https://en.wikipedia.org/wiki/Postcondition
https://en.wikipedia.org/wiki/Invariant_(mathematics)#Invariants_in_computer_science

PRECONDITION

“condition or predicate that must always be true
just prior to the execution of some section of code
or before an operation” - Wikipedia.

https://en.wikipedia.org/wiki/Precondition

BEST AGAINST PROGRAMMER ERRORS THAT
OTHERWISE PRODUCE UNDEFINED BEHAVIOR

POSTCONDITION

“condition or predicate that must always be true
just after the execution of some section of code
or after an operation” - Wikipedia.

https://en.wikipedia.org/wiki/Postcondition

POSTCONDITION

SOME EXAMPLES

® Observable state changes.

® An exception safety guarantee: noexcept, strong,
basic, none.

INVARIANT

“logical assertion that is always
held to be true” - Wikipedia.

https://en.wikipedia.org/wiki/Invariant_(mathematics)#Invariants_in_computer_science

INVARIANT

SOME PERSPECTIVES

Loop.
Function.

Class.

Responsibility - SOLID.

An idea about what'’s intended.

VIOLATION

® Programming issue.
® Not runtime error.
® Fail fast or behavior not specified.

EXAMPLE

® What are the preconditions?

® What are the
postconditions?

® What are the invariants?

® Are they enforced?

validate
v <0.0

Vi

V)s

value{validate(v

value;

WHY DBC?

INSPIRING
DOCUMENTATION?!

INSPIRING
TESTING?!

IMPROVING
ROBUSTNESS?!

IMPROVING
CORRECTNESS?!

First Step Solving Problem Is Recognizing It

NOT JUST SOFTWARE?

ASSERTION: UNDER-RECOGNIZED CONDITIONS IN HARDWARE CAUSES ISSUES TOO LIKE...

® Spectre.
® Meltdown.

® Rowhammer.

® Broken protection rings.

https://en.wikipedia.org/wiki/Protection_ring

IF AIDOESN'TKILLUS, NOT
COLONIZING SPACEWILL

SPACE INDUSTRY

STATISTICS FROM EXTREMETECH.COM

® Growing faster than workforce.
® $464 billion in January 2023.
® $1 trillion valuation by 2030.

® Bug == "rapid unscheduled
disassembly”!

https://www.extremetech.com/aerospace/space-industry-is-growing-faster-than-its-workforce-analysts-say

FASTER
CODE?!

CONTRACT?

#include <stdexcept>

double process(double v) {
if (v < 0.0) {

throw std::exception();

}

return v * v;

CONTRACT?

#include <cassert>
#include <stdexcept>

double process(double v) noexcept {
assert(v >= 0);
return v * v;

SOME TOOLS

Doxygen

Assert

Throw expression
Unit testing

Class Types

C++ Contracts?

https://www.doxygen.nl
https://en.cppreference.com/w/cpp/error/assert
https://en.cppreference.com/w/cpp/language/throw
https://en.wikipedia.org/wiki/Unit_testing
https://en.cppreference.com/w/cpp/language/class
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html

TOOL: DOXYGEN

https://www.doxygen.nl

Doxygen (via
ll\ll or ll@ll)

o /// @pre Qv is greater-than or equal-to 0.
Precondltlons pre double sqrt(double v) noexcept;

/// @post <code>get handler()</code> returns @p handler given.

Postconditions OSt void set handler (handler type handler);

/// @invariant Value always non-negative.

invariant .
class NonNegative {

https://www.doxygen.nl/manual/commands.html#cmdpre
https://www.doxygen.nl/manual/commands.html#cmdpost
https://www.doxygen.nl/manual/commands.html#cmdinvariant

+ SolveVelocity()

bool SolveVelocity (PulleyJointConf & object,
const Span< BodyConstraint > & bodies,
const StepConf & step
)
Solves velocity constraint.

Precondition
InitVelocity has been called.

« Interval() 2/2;

template<typename T >

constexpr playrho::interval< T >:Interval (const value_type & v) [inline |

Initializing constructor.

Postcondition
GetMin () returns the value of v.

GetMax () returns the value of v.

Detailed Description

A "body" physical entity.
A rigid body entity having associated properties like position, velocity, acceleration, and mass.

Invariant
Only bodies that allow sleeping, can be put to sleep.

Only "speedable" bodies can be awake.

Only "speedable" bodies can have non-zero velocities.

Only "accelerable" bodies can have non-zero accelerations.

Only "accelerable" bodies can have non-zero "under-active" times.

The body's transformation is always the body's sweep position one's linear position and the unit
vector of the body's sweep position one's angular position.

TOOL: CLASS TYPES

BASICS

Available pre C++-contracts.
Enforce condition on construction.
Self documenting.

Recognize relationships.
DRY.

class NonNegative {
double value{};

public:
static double validate(double v) {

if (v <0.0)
throw std::invalid_argument('"n/a");

return v;

}

NonNegative() noexcept = default;
NonNegative(double v):
value{validate(v)} {}

operator double () const noexcept {

FROM BEFORE, PERHAPS FOR rtor doubre |
SQUARE ROOT FUNCTION...

ADVANCED

® Partial functions become total functions?

® Functions with preconditions are partial
functions.

® Denotational semantics (domains)?

® (orrect by-design?!

https://en.wikipedia.org/wiki/Partial_function
https://en.wikipedia.org/w/index.php?title=Total_function&redirect=no
https://en.wikipedia.org/wiki/Denotational_semantics

QUESTIONS?

