
LOUIS LANGHOLTZ 03/16/2023

Intro to C++ Classes

New Mexico C++ Programmers



LOUIS LANGHOLTZ 03/16/2023

• Of things (shape, person, location, etc.)


• And instances of classes.


• Compound types.


• More generally, user defined types.


• Object oriented programming: is-a, has-a, encapsulation, inheritance, polymorphism.

Classes?



LOUIS LANGHOLTZ 03/16/2023

• Aggregation.


• Encapsulation.


1. Implementation.


2. Invariance.


• Dominion.


• Other?

Use categories



LOUIS LANGHOLTZ 03/16/2023

• From C: struct. Compound types with member variables.


• C++ drops: need to preface usage with struct (usually).


• C++ adds: class, access specifiers, member functions, inheritance, virtual.


• Difference between struct and class is their default access:


• struct: members are public - accessible where defined.


• class: members are private - accessible only within member functions (or “friends”).


• Otherwise interchangeable - except… some compilers don’t want to see a class referred to as both (MSVC). 


• Access specifiers:


1. public.


2. private.


3. protected - private except to classes that have inherited from this class.

Brought to you by C



LOUIS LANGHOLTZ 03/16/2023

• Static: non-instance accessing functions.


• Non-static: instance accessing functions:


• Non-“special” member functions.


• “Special” member functions. Functions that may be defined by compiler even if not defined by 
user!

Member Functions



LOUIS LANGHOLTZ 03/16/2023

• Specific functions automatically defined by compiler, unless prevented by programmer:


1. Default constructor.


2. Copy constructor.


3. Move constructor.


4. Copy assignment.


5. Move assignment.


6. Destructor.


• A framework for regularity, reducing surprise!

“Special” Member Functions



LOUIS LANGHOLTZ 03/16/2023

• Uses the access specifiers also but meaning is a little different:


1. public (default for struct): For “is-a”. But, be wary of squares & rectangles & change!


2. private (default for class): For “is implemented in terms of”. But, prefer composition.


3. protected: private except to classes that have inherited from this class.


• Examples:


• struct base { int b; int f(); }; base base_object;


• struct sd: base { int v; int g(); }; sd a_base_object;


• class cd: base { int v; int g(); }; cd an_implemented_object;

Inheritance



LOUIS LANGHOLTZ 03/16/2023

• English language definition: “The property of remaining unchanged regardless of changes in the 
conditions of measurement”.


• A property of variables or relationships between them.


• Enforced by hiding class definition, non-public access specifiers, or constructors throwing 
exceptions.


• A cause for encapsulation.

Invariance

https://www.dictionary.com/browse/invariance#:~:text=%5B%20%C4%ADn-v%C3%A2r%E2%80%B2%C4%93-,is%20related%20to%20conservation%20laws.


LOUIS LANGHOLTZ 03/16/2023

• Base classes. Help with multiple inheritance.


• Member functions.


• A way to provide type system based, dynamic polymorphism.


• Be aware of alternatives: static polymorphism, NVI, strategy pattern, traits.


• Require user defined virtual destructor to ensure proper destruction of derived types.


• Cause issues with copy operations and complicate “equality”.


• Leads aware from value semantics to reference semantics.

Virtual



LOUIS LANGHOLTZ 03/16/2023

• Value semantics == local reasoning. Passing by value or by constant reference. Easier to reason 
about.


• Reference semantics == remote reasoning. Passing by non-constant reference. Having pointers 
or references to variables that some other code may change. Harder to reason about.

Value semantics v. Reference semantics



LOUIS LANGHOLTZ 03/16/2023

• C++ Core Guidelines C.2: “Use class if the class has an invariant; use struct if the data members can vary 
independently”.


• C++ Core Guidelines C.10: “Prefer concrete types over class hierarchies”.


• Me: Struct first design. Use struct, public member variables, & free functions.


• When you decidedly have an invariant, make the member variables private and provide public member 
functions that can’t violate the invariant.


• Avoid privatization.


• Avoid derivation.


• More than two member variables? Have multiple invariants or no invariants! Single responsibility principal: 
refactor the member variables with invariant properties or relationships to their own classes.

Preferences & opinions

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c2-use-class-if-the-class-has-an-invariant-use-struct-if-the-data-members-can-vary-independently
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c10-prefer-concrete-types-over-class-hierarchies


LOUIS LANGHOLTZ 03/16/2023

1. struct point {int x; int y;};


2. class point {int x; int y;};


3. class point {int x; int y; public: int get_x() const {return x;} void set_x(int v) {x = v;}};


4. class point {int x; int y; public: point(int x_, int y_); int get_x() const; void set_x(int v);};


5. struct point {int x; int y; public: int get_x() const {return x;} void set_x(int v) {x = v;}};

More Examples

https://godbolt.org/z/8bYc7TKs7
https://godbolt.org/z/vG5qP8of9
https://godbolt.org/z/snvf7x8Wh
https://godbolt.org/z/c44j9hhM5
https://godbolt.org/z/8zhKjoond


LOUIS LANGHOLTZ 03/16/2023

• Hope this material has given you some introduction to C++ classes!


• Did it provide any “food-for-thought”?


• Have you heard the term “encapsulation” before?


• What’s more encapsulated? Example 1 or example 4?


• Are you familiar with object oriented programming?


• What about “regularity” and polymorphic base classes?

Questions & Answers


